ছক কাগজে সমান দূরে পরস্পরছেদী সমান্তরাল সরলরেখা দ্বারা ছোটো ছোটো বর্গে বিভক্ত করা থাকে। ছক কাগজে কোনো বিন্দুর অবস্থান দেখানোকে বা কোনো বিন্দু স্থাপন করাকে বিন্দু পাতন বলে। বিন্দু পাতনের জন্য সুবিধামতো দুটি পরস্পর লম্ব সরলরেখা নেওয়া হয়। চিত্রে XOX'ও YOY' রেখাদ্বয় পরস্পর লম্বভাবে ০ বিন্দুতে ছেদ করেছে। O বিন্দুকে বলা হয় মূলবিন্দু। অনুভূমিক রেখা XOX' কে x-অক্ষ এবং উল্লম্ব রেখা YOY' কেy-অক্ষ বলা হয়।
প্রধানত ছক কাগজের ক্ষুদ্রতম বর্গক্ষেত্রের বাহুর দৈর্ঘ্যকে একক হিসেবে ধরা হয়। সাধারণভাবে যেকোনো বিন্দুর স্থানাঙ্ককে (x, y) লেখা হয়। X-কে বলা হয় বিন্দুটির x-স্থানাঙ্ক বা ভুজ এবং y-কে বলা হয় বিন্দুটির -স্থানাঙ্ক বা কোটি। স্পষ্টতই মূলবিন্দু O এর স্থানাঙ্ক হবে (0,0)।
মূলবিন্দু থেকে x-অক্ষের ডানদিক ধনাত্মক দিক ও বামদিক ঋণাত্মক দিক। আবার, মূলবিন্দু থেকে -অক্ষের উপরের দিক ধনাত্মক দিক ও নিচের দিক ঋণাত্মক দিক। ফলে ছকটি অক্ষদ্বয় দ্বারা চারটি ভাগে বিভক্ত হয়েছে। এইভাগ চারটি ঘড়ির কাঁটার ঘূর্ণনের বিপরীত দিক অনুযায়ী ১ম, ২য়, ৩য় ও ৪র্থ চতুর্ভাগ হিসেবে পরিচিত। প্রথম চতুর্ভাগে যেকোনো বিন্দুর x স্থানাঙ্ক ও স্থানাঙ্ক উভয়ই ধনাত্মক, দ্বিতীয় চতুর্ভাগে যেকোনো বিন্দুর X স্থানাঙ্ক ঋণাত্মক ও y স্থানাঙ্ক ধনাত্মক, তৃতীয় চতুর্ভাগে যেকোনো বিন্দুর X স্থানাঙ্ক ঋণাত্মক ও y স্থানাঙ্ক ঋণাত্মক এবং চতুর্থ চতুর্ভাগে যেকোনো বিন্দুর X স্থানাঙ্ক ধনাত্মক ও y স্থানাঙ্ক ঋণাত্মক।
পূর্বের অনুচ্ছেদে আলোচিত লিজার অবস্থান (3, 2) নির্ণয় করার জন্য প্রথমে x-অক্ষ বরাবর ডানদিকে 3 একক দূরত্বে যেতে হবে। তারপর সেখান থেকে খাড়া উপর দিকে 2 একক দূরত্বে যেতে হবে। তা হলে লিজার অবস্থান L বিন্দুর স্থানাঙ্ক হবে (3,2)। অনুরূপভাবে চিত্রে P বিন্দুর স্থানাঙ্ক (-2,4)।
উদাহরণ ১। ছক কাগজে নিচের প্রথম চারটি বিন্দু স্থাপন করে তীর চিহ্ন অনুযায়ী যোগ কর: (3, 2) (6, 2) (6, 4) (3, 4) । চিত্রটির জ্যামিতিক আকৃতি কী হবে?
সমাধান: ধরি, বিন্দু চারটি যথাক্রমে A, B, C, D। অর্থাৎ, A(3, 2) B(6, 2) C(6,4) এবং D(3, 4) । ছক কাগজে উভয় অক্ষে ক্ষুদ্রতম বর্গক্ষেত্রের প্রতি বাহুর দৈর্ঘ্যকে একক ধরি। A বিন্দুটি স্থাপন করতে মূলবিন্দু O থেকে x-অক্ষের ডানদিক বরাবর 3টি ছোট বর্গের বাহুর সমান দূরে গিয়ে উপরের দিকে ২টি ছোটো বর্গের বাহুর সমান উঠে গেলে যে বিন্দুটি পাওয়া যাবে, তা A বিন্দু। অনুরূপভাবে প্রদত্ত অবশিষ্ট বিন্দুসমূহ স্থাপন করি। তারপর A B C D A এভাবে বিন্দুগুলো যোগ করি। এতে ABCD চিত্রটি পাওয়া গেল। দেখা যায় যে, ABCD চিত্রটি একটি আয়ত।
কাজ:
|
common.read_more